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ABSTRACT

The adoption of cloud computing has created a huge shift in where data is

processed and stored. Increasingly, organizations opt to store their data outside

of their own network to gain the benefits offered by shared cloud resources. With

these benefits also come risks; namely, another organization has access to all of the

data. A malicious insider at the cloud services provider could steal any personal

information contained on the cloud or could use the data for the cloud service

provider’s business advantage. By encrypting the data, some of these risks can be

mitigated. Unfortunately, encrypting the data also means that some commonly used

operations, such as equality testing or search, do not work because encryption also

obfuscates these properties.

This thesis proposes a system that allows for data to be encrypted with a minimal

impact on data accessibility and usability in its encrypted format. This is achieved by

carefully selecting the encryption methods used with the goal of preserving properties

of the data that are required for the SQL server’s functionality. By preserving only

order, equality, and the ability to perform addition, common data operations can still

be performed. The system was implemented in Java as a proof-of-concept to show

that the encrypted data is still operable on, and to compare it to existing systems.

The impact from implementing this system on the database size, query encryption

and decryption time, and data security is measured and compared to a similar system,

showing that it is feasible for use.
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CHAPTER 1

INTRODUCTION

Data storage in a cloud environment is extremely popular and offers benefits to

organizations of all sizes. Gartner, a research group, predicts that global public cloud

revenue will grow 17.3% to $206.2 billion in 2019 [9]. Any amount of data stored by

an organization, and the services that rely on that data, can take advantage of the

security, reliability, and scalability provided by cloud services. For example, smaller

organizations that host online content often won’t have dedicated security engineers

or experienced server technicians, which can lead to vulnerabilities. Misconfigured

servers were number six in the Open Web Application Security Project (OWASP)

Top 10 vulnerabilities in 2017 [40]. Even large organizations often lack the required

security workforce: the 2017 Global Information Security Workforce Study by Frost &

Sullivan, a business consulting firm, revealed that 66% of 19,175 respondents said that

there were “too few information security workers in my department” [7]. Outsourcing

a database to the cloud allows for at least some of the risk to be mitigated since the

cloud service provider will have security engineers on staff, reducing the possibility of

a data breach by an outside attacker.

Additionally, hosting data in a cloud environment also allows for improved relia-

bility and scalability in the event of a power outage or natural disaster. Major cloud

providers have data centers in multiple locations across the country or world, such as
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Azure’s geo-redundant storage [8] or Amazon Web Service’s Disaster Recovery plan

[43]. During normal day-to-day operation, data centers are capable of handling large

amounts of network traffic. Some businesses, especially small and home businesses,

may not have the capacity to process large amounts of data on their own network.

They also allow for quicker scaling since resources can be almost instantly expanded or

reduced based on current traffic. For a business-critical application, a long downtime

caused by an influx of new customers or small bandwidth could result in lost profits

and reduced competitiveness. For large data sets, an important consideration is that

cloud storage is much cheaper than physical storage. For this reason, many large data

sets are outsourced to the cloud.

Using these services does not come without risk; while attacks from outsiders

might be mitigated, the data owner is trusting another entity with their data. Log-

icMonitor, a cloud configuration platform, surveyed 283 professionals and found that

66% reported security as a major challenge in cloud adoption [3]. In some cases,

such as storing personal information or credit card data, it might be unwise. In

others, such as secret government data or certain types of personal information, it

could be illegal. Encrypting the data allows users to gain the benefits of cloud service

without exposing their data to potentially malicious actors. However, encrypting data

without regard to how it will be processed causes some problems with the usability

of the data: encryption destroys certain properties of data. For example, encrypting

multiple messages using the RSA encryption scheme means that the messages can’t

be sorted or summed, but can still be multiplied [42]. Encryption using AES means

that all properties of the data are destroyed, rendering it equivalent to a random

number in usefulness.
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1.1 Objective of this work

By leveraging the properties that are preserved after certain types of encryption, we

aim to build a database encryption scheme which allows for operation on the data

while it is still encrypted. The goal is to create a system that is transparent to

the database server which also provides confidentiality using a minimum amount

of additional resources. In this context, transparency means that the database

management server (DBMS) does not need to be modified for the software to function.

This is important to allow the system to be used on a commercially available public

cloud database system.

1.2 Motivation

The use case scenario for this thesis is a database system used by only one organi-

zation. The organization might want to put their data on the cloud for a variety of

reasons, including low start-up costs, quick scaling, or geographic redundancy. A few

possible scenarios could be:

• Email server: Emails may contain sensitive company or personal information

• Web shop back end: Customers’ credit card and address information are

likely stored

• Personal data in a smart city: Some information might be applicable to

group computations (weather, traffic volume), but other information (license

plate numbers, facial recognition data) should not

Email servers and web shops are both areas where the high availability afforded by

cloud systems is crucial and where sensitive data is likely being stored and processed.
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Downtime for a web shop directly leads to lost sales, especially when another provider

is likely a few clicks away. In a business setting, a lack of access to email can lead to

a loss in productivity.

Smart city systems is a growing area where sensitive private data is being stored

on cloud servers. In a smart city, data is collected from various sensors including

surveillance cameras, traffic congestion sensors, and fire detection sensors. Since

they are often running all the time, these sensors can generate a large amount

of data that might become costly for a government entity to store. While some

data may not be sensitive (e.g. air quality, temperature), other types of data may

contain personally identifiable information, such as license plate numbers, movement

tracking information, or video feeds. AWS provides support for integrating city

government functions into their cloud environment. City governments are already

using this service to store their information, including the New York City Department

of Transportation, the Singapore Land Transport Authority, and the City of Chicago

[2].

These use case scenarios support the need for a database structure where only

one organization is accessing the data. This is in contrast to privacy-preserving

computing, where statistical metadata is shared between multiple entities.
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CHAPTER 2

RELATED WORK

Other methods to preserve the confidentiality of a database have been proposed in

the past. They range from encryption schemes without regard to SQL operations to

complex interactive tree-based systems.

2.1 Early Attempts

Hakan Hacigümüş’ 2002 paper [23] is an early example of attempts to solve this

problem. It has a similar general setup as both this system and CryptDB [39], but

relies more heavily on client-side processing than either system. This becomes a

major disadvantage as the size of the data grows. The large ciphertexts need to be

transported to the client to be decrypted and filtered. This also severely weakens one

of the advantages of cloud computing: increased processing power.

2.2 Enterprise Solution

Microsoft Always Encrypted offers client-side encryption integrated directly with

Azure. Sensitive columns can be encrypted with either deterministic or random

encryption. Advanced Encryption Standard (AES) is used to encrypt all values

in this system. When random encryption is being used, the initialization vector

(IV) is a random number. When deterministic encryption is being used, a hash
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of the plaintext value is used as the IV. Encrypted columns are accessed through

special drivers installed on the client’s computer, which perform the encryption and

decryption. Columns with random encryption can’t have any operations performed

on them besides a plain select and cannot be used in any statement’s clauses. Columns

with deterministic encryption can be used for equality testing and as primary keys,

however other comparisons (e.g. order, substring matching) are not available. There

are also no homomorphic encryption options, meaning functions like sum or average

would be performed on the client machine. Instead, Always Encrypted does not

support any mathematical operations on encrypted data.

2.3 CryptDB

CryptDB [39] approaches the problem in a similar manner as this paper, but with

more complexity. All data is encrypted up to seven times to achieve different security

properties. For example, a string would be encrypted, then that ciphertext would

be encrypted, then that ciphertext would be encrypted again, creating three “layers”

of encryption. Together, the multiple layers of encryption are called an “onion”.

The same string would be encrypted again three times with different methods of

encryption to form a second onion, then separately encrypted again one more time.

This results in three cipher texts (three onions) representing the same data, and seven

encryption keys that need to be stored per column. Any sensitive portions of queries

over this data also need to be encrypted up to three times and data returned will need

to be decrypted up to three times. As sensitive properties of the data are required

for the database server to perform a query (e.g. order, equality), the data will be

permanently decrypted to a lower security level. Encryption keys are derived from
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user passwords as they log in so that a compromised client server doesn’t release keys

of not-logged-in users.

The system outlined in this thesis takes a simpler approach with less initial security

guarantees, but similar guarantees to CryptDB after the system has been in use.

The system in this thesis encrypts and stores data only once or twice per datum

depending on the data type. This gives faster processing times per query and lower

space requirements (see section 5 for a comparison). When the client pays for their

data storage based on its size or network usage, the costs can quickly add up when

the data is inflated. The per-query execution time is also lower, meaning constantly

faster queries. As the system is used, the ciphertexts can reach their lowest layer of

encryption, meaning that CryptDB would provide no additional security guarantees

while still requiring additional storage and processing power.

Finally, CryptDB cannot be adapted for use in many popular cloud systems

because of its dependence on User Defined Functions (UDFs). UDFs are SQL func-

tions written in C or C++ that are added to the server but do not require the

recompilation of the DBMS. CryptDB uses UDFs for changing the layer of encryption

(i.e., decrypting the onion to reveal a ciphertext with more properties) on a given

column and other operations. Popular cloud DBMSs, including Microsoft Azure

and Amazon Web Services (AWS), don’t allow for the installation of UDFs on their

database-only services (such as AWS’s Relational Database Service) as not to allow

untrusted software run on a shared resource (the underlying server). In order to use a

cloud service, one must instead use a virtual machine with their SQL server of choice

installed. This preserves many of the benefits of cloud computing, but does not allow

for as simple storage size scaling or as simple setup.
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2.4 Tree-Based Solutions

Poddar’s, Boelter’s, and Popa’s Arx [37]; Egorov’s and Wilkison’s ZeroDB [19];

and Popa’s, Li’s, and Zeldovich’s encryption scheme [38] encrypt all data with the

randomized AES encryption scheme and use encrypted tree structures to perform

operations over the data. The DBMS remains unmodified, but two additional servers

are required: a client proxy server that rewrites queries and a server proxy that

performs interactive tree traversals with the DBMS. The storage and time penalties

for the extra trees and the encryption are high. In the case of Arx, the encrypted

database is approximately sixteen times larger than the original database. ZeroDB,

a commercial solution, can require multiple decryptions, interactions between the

server and client, and traversals of a B-tree for a single query. This introduces a high

performance penalty and network load.

2.5 Hardware-Based Soltions

TrustedDB [14] and Cipherbase [13] use a trusted hardware extension of the server to

process sensitive data. This allows for faster execution of queries as they don’t need

to be transformed before they are handled. The queries are either handled by the

tamper-proof hardware or are forwarded to the regular query processor if they don’t

contain secret data. Using the secure processor does incur a performance penalty, but

it is less than encryption-only systems. This system requires that a secure module is

allowed to be integrated into the system, which is not possible when using commodity

data storage and breaks the transparency requirement of this paper.
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2.6 Secure Multiparty Computing

Secure multiparty computing, or privacy-preserving computing, is a related but dis-

tinct research area: the product of this thesis would be used to secure a production

database where the data is owned by a single entity or shared between entities where

data does not need to be hidden. Privacy-preserving computing, on the other hand,

is used to generate aggregate information from data sets with different owners. For

example, Wang et al. [45] is a system to allow a third party auditor to access an

organization’s data to ensure integrity. In the use case for this thesis, allowing an

external user to do any kind of analysis of the data should not be allowed. This is

discussed in section 1.2.
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CHAPTER 3

CRYPTOSYSTEMS

Multiple cryptosystems, or methods for the encryption of data, are necessary to reveal

different properties of the data while still maintaining confidentiality. To achieve our

goal, we require a cryptosystem that reveals the order of the plaintext data and one

that allows addition without revealing the terms or the sum to the machine performing

the computation. We also make use of a hashing method to protect certain types of

data.

In this chapter, the following conventions apply for readability:

• m refers to the plaintext message

• e refers to the encrypted message

• encrypt() is the encryption function of the cryptosystem such that

encrypt(m) = e

• decrypt() is the decryption function of the cryptosystem such that

decrypt(e) = m

• hash(x) is the SHA-3 hash of x

• lcm(x, y) is the lowest common multiple of x and y

• || indicates concatenation



11

3.1 Paillier Encryption

Paillier encryption was created in 1999 by Pascal Paillier to introduce a new additively

homomorphic encryption scheme. It is based on the discrete log problem, i.e., the

problem stating that it is computationally hard to find m given y, n and the value

ym mod n [35]. This cryptosystem was selected for this application instead of a

more popular cryptosystem such as RSA or ElGamal because it preserves the additive

property, while RSA and ElGamal only preserve multiplication [42] [20]. Preservation

of addition was chosen over multiplication because commonly used SQL functions like

SUM or AVERAGE depend on the availability of addition. Furthermore, multiplica-

tion of an encrypted value is still possible if it is being multiplied by a non-sensitive

constant. Raising the column to the power of the constant will produce the encrypted

product of the plaintext value and the multiplier, i.e. decrypt(ex mod n2) = m · x

where x is the multiplier.

Much like RSA, Paillier keys are generated from two large primes, p and q. To

find the complete key, find n, λ, and µ.

n = p · q

λ = lcm((p− 1) · (q − 1))

µ = [
(gλ mod n2)− 1

n
]−1 mod n

Let g be a positive non-zero integer less than n2. The public key is (n, g) and the

private key is (λ, µ). To encrypt a message, compute

c = gm · rn mod n2
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where r is a random number regenerated with every encryption. To decrypt a message,

compute

m =
(cλ mod n2)− 1

n
· µ mod n

Addition is just multiplication modulo n2.

m1 +m2 = decrypt(encrypt(m1)× encrypt(m2) mod n2)

Multiplication can be achieved by computing the ciphertext to the power of the

multiplier, i.e. m · x = decrypt(ex mod n2). This reveals the multiplier to the server

and can only be used if x is not sensitive. The value of m is never revealed to the

entity performing the multiplication.

In section 5 of Paillier’s original paper [36], he describes an alternative encryption

scheme by the same method. To fit a longer message into a single ciphertext, it is

split into two parts, m1 and m2 where m1 can be any message and m2 ∈ Z∗
n. m2

is used in place of r, and the rest of the equation remains unchanged. Using this

method, messages less than n2 can be encrypted in one ciphertext. Both m1 and m2

are recoverable.

3.1.1 Derivation from the Original

In order to test the equality of two values after an encrypted addition has occurred (i.e.

a
?
= b+c), the encryption of the numeric values must be deterministic. In the original

Paillier encryption scheme, the random r prevents this. To make the cryptosystem

deterministic, the r is replaced with the SHA-3 hash of the value. This allows for

a deterministic encryption without risking exposure of small messages (when the

message is small, factoring gm can be easy if it’s not obfuscated by another value).
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The trapdoor from section 5 can’t be used directly here because it breaks the additive

property. Instead of splitting the message m as required by the system, we are

defining our m as the paper’s m1 and the hash of m as m2. So, the paper’s m is

our m||hash(m). We ignore m2 during the decryption phase since it will become

corrupted by any additions and it is unnecessary. The original paper warns that m2

(hash(m)) must be in Z∗
n. This is guaranteed in our setting because the hash is at

most 512 bits, the size of either prime and therefore less than the product of them.

3.1.2 Hardness of the derivation

Given c = (gm mod n)×hash(m) mod n2, assume m is not computationally difficult

to find. To isolate m, the attacker will first need to find gm mod n or hash(m) to

begin solving for m. Assuming this is possible, the attacker is left with gm mod n

and hash(m). Assuming the attacker is able to find m from gm mod n, the discrete

log problem 1 is not hard. Assuming the attacker is able to use hash(m) to find m, the

hash function does not provide preimage resistance. Since the discrete log problem

is known to be hard, modern hash alogrithms provide preimage resistance [35], and

the attacker has no way to find gm mod n or hash(m), finding m is computationally

difficult.

3.2 Boldyreva’s Order Preserving Encryption

Order preserving encryption is a cryptosystem where the ciphertexts of a set of

messages appear in the same order as the original messages. This is done by de-

1The discrete log problem (DLP) says that “Given the finite cyclic group Z∗
p of order p− 1 and

a primitive element αεZ∗
p and another element βεZ∗

p. The DLP is the problem of determining the
integer 1 ≤ x ≤ p− 1 such that: αx ≡ β mod p” [35].
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terministically assigning each message a value in a subrange of the total encryption

range. This is illustrated in Figure 3.1. Since the plaintexts are assigned to a subrange

in the same order as the original messages, the ciphertexts remain in the correct order.

Figure 3.1: An illustration of order preserving encryption.

The order preserving encryption used in this scheme is Boldyreva’s Order Preserv-

ing Encryption (OPE) [15], the first provably secure order preserving method. OPE

allows for direct comparison between any two ciphertexts, allowing for efficient and

transparent ”where” and ”order by” clauses when both ciphertexts are encrypted

by the same key. A consequence of using any order preserving encryption scheme

is that up to half of the plaintext bits can be derived from the ciphertext [38]. In

fact, Boldyreva’s original paper shows that it is impossible for any OPE scheme to

produce ciphertexts that are indistinguishable under a chosen-plaintext attack. Since

the client does not provide an encryption oracle, the attacker shouldn’t have access

to a chosen plaintext. Tree-based solutions like Popa’s ”An Ideal-Security Protocol

for Order-Preserving Encoding” [38] have been proposed, but incur large space and

time penalties, and require interaction between the client and the server. Even using

a tree-based cryptosystem, the data can often be derived using a non-crossing attack

[22].
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3.3 Secure Hash Algorithm 3

Hashing algorithms generate a numeric representation of some data by operating on

it in such a way that any original meaning of the data is destroyed. Famous hashing

algorithms include Rivest’s MD5 [41] and the Secure Hash Algorithm family [18] [26].

Since the plaintext is not recoverable from the hash, hash functions are not encryption

methods per se, but are still useful in many applications. The irreversibly of hash

functions is called pre-image resistance and is integral to their use. Other important

characteristics of a good hash function are second pre-image resistance and collision

resistance. Second pre-image resistance means that, given a message, it is hard to

find another message with the same hash. Collision resistance means that it should

be hard to find any two messages with the same hash. Furthermore, a hash function

is especially useful if it generates any given hash with about the same probability as

any other hash.

Secure Hash Algorithm 3 (SHA-3) [17] is used in this program to protect table and

column names. A hashing algorithm was chosen over encryption for speed: generating

the hash of a string is generally much faster than encrypting it. Additionally, these

names need to be stored by the client regardless, so there is no need to recover

them from the server. SHA-3 was chosen because it is the most recent National

Institute of Standards and Technology (NIST) approved hashing method. Older

hashing schemes are still commonly used, but are becoming less secure due to both

increased computing power availability and inherent weaknesses. For example, a

collision in SHA-1 was found last year by researchers at Google [44]. Using flaws in

the mathematical foundations of the hashing method, the researchers were able to

find the collision 100,000 times faster than using a brute-force method.
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CHAPTER 4

DESCRIPTION OF THE SYSTEM

In this section, I will describe how the system components work together to create a

lightweight encrypted database system.

4.1 Definitions

• Client: The data owners

• Proxy: The software that encrypts queries and decrypts result sets

• Key store: A SQL server that contains the encryption keys, hashes, and other

database metadata. It does not contain any of the user’s data and is always

owned by the client.

• Cloud server: The SQL server hosted by another organization, which is accessed

via the internet

4.2 Access Models

This system can work with two main access models with different benefits for each.
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4.2.1 Web Server Model

In this model, one central proxy server - owned by the data owner and residing on

their network - processes all query encryptions and result set decryptions. This server

could be queried by either connecting client applications to it as an intermediary, or by

providing a web interface with which the clients could interact. The main advantage

of this model is that it allows for increased portability since a user could access

the databases from any computer without having to install any additional software.

Another advantage of this model is that key revocation becomes a non issue since all

cryptographic operations take place on the server. The primary disadvantage of this

model is that the server may become a performance bottleneck since the cryptographic

functions require significant computational power. Additionally, it imposes a higher

start up cost on the client because they must invest in a server that is capable of

performing multiple encryption and decryption requests at a time, removing a main

advantage of using cloud computing. This setup is outlined in Figure 4.1.

4.2.2 Decentralized Model

In the decentralized model, encryptions and decryptions are performed by the users’

machines themselves, i.e. the proxy software is installed on every user’s machine. The

users’ machines would retrieve the encryption keys from a small local SQL server or

keep the key store on their own machine, then use the proxy software installed on their

devices to interact with the cloud database. This model would scale more easily than

the centralized model since the server doesn’t have to perform the cryptographic

functions for the users; as the number of users increases, so does the computing

power. This also means that the organization does not need to host a powerful
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Figure 4.1: A centralized web server model.

server, but rather one can distribute small amounts of data when a user connects to

a database for the first time. Key revocation would be difficult as the users would

have copies of the keys on their local machines. Changing the keys would mean that

the data would have to be downloaded and re-encrypted. Additionally this would

require installation of some software, so the data would not be accessible from public

workstations. Figure 4.2 demonstrates how interactions in this model could look.

4.3 Encryption Types

There are four types of data that are encrypted in this scheme: Identity (I-type),

Numeric (N-type), String (S-type), and SubString (SS-type).

I-type data includes database, table, and column names. This is hashed using

SHA-3. It is hashed instead of encrypted as a time saving measure, since hashing
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Figure 4.2: A distributed key-sharing model.

is faster than encrypting. An implication of hashing is that the database, table,

and column names cannot be recovered from the hash. This is acceptable because

reversing the hash is not necessary since the plaintext names must be stored by the

proxy anyway so that they can be tied to their encryption keys. Also, because the

proxy has access to the plaintext query, it knows what data was requested.

The N-type label is used for any numeric data. The data are encrypted once

using OPE and one using Paillier encryption. This is because each type provides a

different necessary property for the database functionality. OPE provides both order

checks and equality checks. Paillier ciphertexts provide homomorphic operations for

addition, subtraction, and non-sensitive multiplication. Since they are maintained as

two separate columns, when one is updated, they both need to be changed. This is

straightforward when the column is being set to a constant (e.g. myint = 10) since the

value can be encrypted with each cryptosystem and uploaded to the server. However,
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it is more complicated when the homomorphic property is being taken advantage

of during an update query (e.g. UPDATE tbl SET myint = myint + 10). This is

discussed further in section 4.4.6.

S-type data are encrypted using only OPE. This is possible because addition is

not applicable to strings. In S-mode, the entire string is encrypted together and

substring matching is not possible. SS-type data are encrypted block-by-block, by

default using whitespace as a delimiter. The user can select a custom delimiter

to better complement their data set, such as a hyphen (“-”). Date type data are

automatically encrypted as SS-type data with hyphens as the delimiter to allow for

year, month, or day matching. Since the dates are saved in the order year-month-day

by default, no adjustment is needed to preserve order [31].

4.4 Walkthough of Software

When the user sends a SQL query, it is first parsed by the proxy software using

JSQLParser [10]. JSQLParser transforms a SQL statement into hierarchical Java

classes which can be traversed using the visitor pattern [27]. For example, the

statement “SELECT col FROM table” would be transformed into a Select object,

which has references to a Column object and a Table object. Using the visitor pattern,

a Visitor class would first visit the Select object. Inside the Select object the Column

and Table objects would also be recursively visited and hashed. As each object is

visited, the relevant content is added to a StringBuilder object that is owned by the

visitor object and shared between recursive calls. The result of the StringBuilder is

then sent to the DBMS. Data is returned to the proxy over the internet in its encrypted

format. The proxy decrypts the results, performs any additional formatting or delayed
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arithmetic operations, and finally reveals the data to the user.

4.4.1 Key Store

Keys are stored in a small MySQL database instance that is owned by the client. In

the decentralized model, this would be a database on a server on the client’s network.

In the centralized model, the proxy server and this key store would run on the same

server. Each encrypted database is represented by a local database and each table is

represented by a local table. Each column is represented as a row in the table. The

local tables contain four columns: the data column name, the hashed data column

name, the data type, and the encryption type. None of the data itself is stored on

the local key server. A local MySQL instance is used because it allows for quick key

finding and manipulation. Storing the encryption keys in a MySQL instance also

allows for easy key privilege partitioning. The permissions built in to MySQL can be

used to only allow only those who should have access to retrieve the keys by setting

their select privilege on a per-database or per-table basis.

In this implementation, 512-bit Paillier keys and 128-bit OPE keys are used in

order to allow for a better comparison against CryptDB, which uses keys of those

sizes. Ideally, a 256-bit OPE and a 2048-bit Paillier key would be used to provide a

higher level of security.

4.4.2 Encrypted Data Format

The database retains it’s original structure. Database names, table names, and

column names are represented by their hashed names. Besides the hashed names,

only the data types and number of columns are different. All columns are stored as

blobs to allow for sufficient storage space. A blob is a variable-length binary string
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datatype, i.e. it holds any amount of binary data [32]. Numeric data has two values,

so it is stored in two columns: one that is just the hash of the original column name

and one that is the hash with “ hom” (for homomorphic) appended to it.

Because the encryption methods take only numeric inputs, strings must be pre-

sented as integers. To convert strings to a numeric format, they are represented as a

byte array of ASCII values. The byte array is passed to the BigInteger constructor,

which interprets it as a number which can be encrypted. If the string is longer than

32 bits, it is broken into 32-bit sections. Each section is encrypted independently. If

the final section is not 32 bits long, it is right-padded before encrypting. Encrypting

this way maintains order. Numeric values are encrypted without modification.

Figure 4.3 shows how the keys are stored in the client-side database. Figure 4.4

shows how the data is stored on the cloud server. Figure 4.5 is the same data if it

were stored in an unencrypted database instance.

Figure 4.3: An example of the table the keys are stored in. The keys are truncated
due to their length.

Figure 4.4: An example of data stored in it’s encrypted format.
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Figure 4.5: The same data as Figure 4.4 in its unencrypted format.

4.4.3 Select Statements

Select statements allow users to retrieve data from the database. As the parser

traverses the statement and encounters column names, it inserts the hashed column

names into the encrypted version of the statement. If all columns are being selected

(“SELECT *”), the * is replaced by the list of column names to avoid selecting the

homomorphically encrypted data, which are not necessary and whose ciphertexts are

very large relative to the datasize and to the OPE ciphertext size. When a ”where”

clause is encountered, the column name is hashed and the value is encrypted with

its key or processed accordingly if it is an expression. The encrypted query is then

forwarded to the server. As an example, the query

SELECT fname FROM employee ;

becomes

SELECT

f0b6dbb5b50ed10963c726f9be05c3e3384e990e8bbaebf9b72bf070
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FROM be93f62e2730e77dfa0a990bf511c76498fd49eb0594f3e99824f82a

;

on this system.

When the server returns the requested data, the proxy can begin to decrypt it.

The proxy does not need to look up the table names because it has the unencrypted

query for reference. Before it begins, it retrieves all the necessary encryption keys

from the key store. The proxy then retrieves the data from the cloud server line-by-

line, decrypts each column’s data, and prints the result. The columns that contain

the Paillier encryption of the data are never selected unless as part of an aggregate

function due to their larger ciphertext size. The OPE ciphertexts is used for simplicity

and speed: simplicity because we only need to perform one type of decryption for all

columns, and speed because OPE decryption is much faster than Paillier decryption.

Additionally, the size of the ciphertexts are smaller resulting in a faster transmission.

4.4.4 Substring Matching

When the column is marked as applicable to substring matching (SS-type), the data

is encrypted on a word-by-word basis. By default, words are delimited by white space

and hyphens. This setting is changeable by the user. Encrypting using this method

will induce a storage and security penalty. The storage penalty will result from

when a plaintext message that would fit in a single ciphertext is split into multiple

messages, resulting in an increase in the number of ciphertexts. The security penalty

is introduced because frequency analysis attacks [25] have a more granular view of

the data.
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Joining Tables

Joined tables within a select statement do not need any special treatment and can

be hashed as usual, i.e. “tbl1 JOIN tbl2” becomes “68..7d JOIN 42..77”. Joins

are only available for columns related by foreign key. This is because foreign key

columns are encrypted deterministically with the same encryption key, so matching

can occur without modification. MySQL will only index 3072 bytes per table between

all of the columns used as an index [33]. Because of this, only the first 1000 bytes

of each ciphertext column are matched, which corresponds to the first 500 bytes of

the plaintext. 1000 bytes is used instead of 3000 to allow for indexes with multiple

columns.

Functions

Aggregate functions require UDFs to compute the sum or average of a column. UDFs

are SQL functions that are written in C and added to MySQL as a library. They

allow the application of powerful C functionality to data in a SQL database. In this

case, UDFs are required for aggregate functions because MySQL does not support

calculation using large integers.

To find the sum of two Paillier ciphers, a modular multiplication with a large

modulus (i.e., n2, see 3.2) needs to be performed. If the encryption key (and conse-

quently the modulus) were small enough to be operated on by MySQL, it would be

insecure. To allow for a large key, a UDF must be used. The BigDigits C library

is used to provide operations on large numbers. The use of UDFs is not usually

considered modifying the MySQL software [38] because adding them does not modify

the SQL server itself, does not require recompilation, and is a legitimate extension of
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the MySQL DBMS software [34]. When UDFs can’t be installed, sums and averages

can be found by first retrieving all the data from the cloud server, then finding the

sum of the data after it has been downloaded.

On the cloud server, the sum UDF retrieves each value and homomorphically adds

it to the running total. When there are no more values, the result is sent to the proxy

for decryption. If the sum were to be larger than n2, the sum would become corrupted.

Because n2 is larger than the maximum integer size in MySQL, no functionality is

lost due to encryption. In an unencrypted database, the too-large sum would overflow

and cause an error anyway.

To compute the average, a sum is computed on the column homomorphically and

a count is retrieved from the database server in clouds. The sum is decrypted by the

proxy, divided by the count, and returned to the user. A division could be performed

by the database server by bringing the sum σ to the power of the modular inverse

of the column count x (modular division, σx
−1

mod n2), but this will fail if the sum

is not a multiple of of the count. Instead, both the sum and the column count are

retrieved and the division is done on the proxy.

4.4.5 Insert Statements

Insert statements require hashing column and table names as with select statements,

but also involve retrieving the necessary data types and keys to encrypt the data

to be inserted. If no columns are specified, the data is encrypted in order of the

table’s columns. When the data is numeric type, it is encrypted once using OPE and

once using Paillier and inserted into the appropriate columns. “ON DUPLICATE

KEY” subqueries tell the server what to do when it tries to insert a tuple where the

primary or foreign key values already exist in the database. These subqueries work
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without modification because the data is deterministically encrypted. Data is sent as

hexadecimal numbers in the format “x‘0F1..E82’”. For example the query

INSERT INTO t b l VALUES ( ’ h i ’ ) ;

becomes

INSERT INTO ‘401

bfd8f5c0573d62d5b65fb1a01b54a0ba47219ef83863ea873335d ‘

VALUES ( x ’ d0d2113abf ’ ) ;

4.4.6 Update Statements

Update statements change already existing rows. This is simple when the update is

changing a column to a static value, e.g. “UPDATE tbl SET col1 = 10;”. However,

when the additive Paillier property is being used, e.g. “UPDATE tbl SET col2 =

col2 + 2;”, the update on the homomorphic (Paillier) column can be done directly

by the database server, but the OPE column must be updated manually. Manual

updates involve downloading the modified ciphertexts to the client, decrypting them,

reencrypting them using OPE, and reuploading them. This process could take a

large amount of resources, but is unavoidable since a cryptosystem that preserves

both addition and order would allow for easy guessing with any known plaintext.

When a non-static update is performed, the update of the OPE column could

happen in two places: either at the time the update is performed or when the order

preserving property is required. A delayed update can be implemented by overwriting

the old OPE value to NULL when the homomorphic update is initially performed.

The reencryption can be triggered when all of the following are true: the order

preserving value is requested, the OPE column is null, and the Pailler column is not
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null (indicating the OPE value should also not be null). The benefit of reencrypting

only when the order preserving property is used is that if an order query is never

executed, the expensive computations can be avoided. The advantage of doing the

reencryption when the initial update is performed is predictability/reliability. If the

reencryption is performed at a later time, a time-sensitive select query with an ”order

by” clause may trigger the reencryption without the user realizing the query will take

a long time.

4.4.7 Delete Statements

Delete statements remove entire rows from a database. Lines can be targeted for

deletion by ”where” and ”limit” clauses. To delete encrypted data, no special pro-

cessing is required beyond hashing the I-type data and encrypting any values in a

where clause.

4.4.8 Create Statements

Create statements are used to add new tables to a database. While the sensitive

information is being hashed and added to the encrypted query, encryption keys must

be generated and added to the key store in the proxy. First, the table name is

extracted from the unencrypted query. A table is created in the key store with

the same name. Then, as each column name and data type is encountered, a key is

generated using Java’s SecureRandom [28]. For Paillier keys, two probable primes are

found using the BigInteger [29] class in combination with the SecureRandom class.

The key is stored as one prime concatenated with the other and the required values

are recalculated when the key is used. For numeric data, the OPE key is the first 128

bits of the first prime. String-type columns generate a random 128 bit number. When



29

the column is a foreign key reference, a new encryption key is not generated. Instead,

the encryption key for the foreign column being referenced is copied. If the column is

string-type, the user is prompted to indicate whether the data will require substring

matching. The column name, type, encryption key, and hash are then inserted into

the key store. All data types are replaced with “BLOB” in the encrypted statement.

Finally, the hashed create statement is sent to the database server.

4.4.9 Alter Statements

Alter statements allow users to make changes to existing tables. Their usability in

an encrypted database system might be limited depending on the specific alteration

being requested, but most operations are still possible. Adding columns is no more

difficult than the initial creation of a column, and only involves hashing the column

name and adding its encryption key to the key store. Similarly, dropping a column

only requires the row containing the key to be removed from the key store before

sending the hashed drop statement to the server. Adding primary keys is also easy

and requires no actual alterations to the data or key store; only hashing the column

name and primary or foreign key name is needed. Renaming a column is as simple

as updating the key store with the new name. Adding a foreign key relationship

requires more work since the encryption key must change. In order to add a foreign

key relationship after the initial table creation, the data in the column must be

downloaded, reencrypted, and uploaded again.
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CHAPTER 5

EXPERIMENTATION

In order to test the penalties introduced by the system, we compare it against an

unencrypted instance of MySQL server and against CryptDB. We want to test these

systems based on the following metrics: storage penalty, database creation time

penalty, query time penalty, and security.

To guarantee the fitness of the system in a cloud environment, this system and the

unencrypted system were also tested for correctness using a virtual machine instance

on Microsoft Azure. Since the available implementation of CryptDB does not allow

for a remote database, it is not tested in the cloud. This data was only checked for

correctness.

The proxy was developed in Java and the MySQL User Defined Functions (UDFs)

were developed in C. The proxy uses JSQLParser [10] to parse the SQL statements,

SECRAM [6] and BouncyCastle [12] for cryptography, and Oracle’s Java Database

Connectivity (JDBC) [30] for interaction with the databases. In the UDFs, the

BigDigits C library [16] was used to support operations on very large numbers, namely

ciphertexts and public keys.
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5.1 Experimental Method

All three systems were tested on a virtual machine with 4GB of RAM and 1 virtual

processor. VirtualBox was used as the hypervisor, Ubuntu as the operating system,

and MySQL from Oracle as the SQL server. Each virtual machine was reset to a

snapshot between each round of testing to ensure a consistent test environment. The

tests were run with the proxy system and the encrypted database on the same system.

This is required for testing because the implementation of CryptDB publicly available

on Github does not allow the encrypted database to be located anywhere besides the

local machine. This also removes the network load variable since all operations happen

on the same machine.

We used the employees sample database set provided by Oracle [11] for testing.

The database consists of 6 tables with a combined 24 columns and 3,919,015 total

rows. Tables connecting each specific employee’s information (employees, salaries,

titles) are linked together with foreign keys by the employee’s id (emp no). The

department tables (departments, dept emp, dept manager) are linked by the depart-

ment’s id number (dept id). A complete list of tables and columns can be found in

Appendix D.

5.2 Space Overhead

The size of our encrypted database is heavily impacted by the number of numeric

(N-type) columns. This is partially because the data is inserted into the database

twice (once encrypted with order preserving encryption (OPE) and once with Paillier

encryption). The size increase is also because the ciphertexts of an asymmetric

cryptosystem like the Paillier cryptosystem are much larger than those of a sym-
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metric cryptosystem like Boldyreva’s OPE. The Paillier ciphertexts are in the rage

of n < c < n2, where n is the product of two large primes. Specifically in this

implementation, the Paillier ciphertexts are in the range of 21023 to 22048 since each

prime is 512 bits. On the other hand, the OPE ciphertexts are d s
32
e · 64 bits where

s is the bit size of the plaintext value. We know this because each plaintext is split

into maximum 32 bit blocks, then each block is encrypted to form a 64 bit ciphertext

block.

This data set contains 18 string values and 6 numeric values, corresponding to

24 OPE ciphertexts and 6 Paillier ciphertexts. For this implementation of OPE, the

plaintext space is 32 bits and the ciphertext space is 64 bits, resulting in ciphertexts

about twice the size of the plaintexts. Paillier encryption is much more expensive,

resulting in about a 64 times increase from plaintext to ciphertext. Specifically, 4

byte integers become 256 byte ciphertexts. Minimizing the amount of data stored as

an integer can help reduce the size of the encrypted database. Below, we compare

the size of this database to the size of the unencrypted database and to the size of

CryptDB.

Table 5.1: Size comparisons among encryption schemes.

Method Size (MB) Increase Factor
Unencrypted 160.6 0
Thesis 1205.5 6.5
CryptDB 3229.4 19.1

Table 5.1 shows the impact of encryption on the database’s size. Increase Factor

is defined as

Increase Factor =
e− u
u

where e is the encrypted database size and u is the unencrypted database size.
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Encryption with our method causes a 6.5 times increase in data size, while encrypting

the same data set with CryptDB created a 19.1 times increase.

As discussed above, integers make up a disproportionate amount of the increase

for this method. Of the 1205.5 megabytes (MB) of encrypted data, 579.5 MB (48%)

are Paillier ciphertexts. Of the 160.6 MB of original data, only 43 MB (26%) were

integers. This demonstrates a 13.4 times increase in integers, which is much higher

than the general expansion rate. CryptDB’s expansion rate is much greater because

the same data is stored in the database three times regardless of the data’s type, and

because each layer of encryption creates a larger ciphertext than the last.

5.3 Timing Overhead

The time required to perform various operations can be loosely compared between

implementations. Since they are programmed in different languages, the underlying

technology can change the time taken to run. For example, Gherardi’s, Brugali’s

and Comotti’s paper [21] shows that a Java implementation of a commonly used

robotics algorithm is 1.09 to 1.91 times slower than the same algorithm in C++,

which CryptDB is implemented in. Even so, the reduced amount of cryptographic

operations performed shows a clear reduction in the time required to interact with

the database.

5.3.1 Initial Database Creation and Insert Statements

Creation of the initial database requires generating encryption keys and encrypting

the database schema. The employees database is provided as a schema file containing
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the create statements and several dump files containing the data itself as a series of

insert statements.

Encryption of the create statements is fast, since only the table and column names

need to be hidden and the keys generated. Each create statement encryption and key

generation took around 1 millisecond. Encryption of the actual initial data is done

via a series of insert statements, taking a total of 14,614,472 ms (4.05 hours). By

comparison, not encrypting the data took 123 ms to create and load the database,

and CryptDB took 25,404,584 ms (7.05 hours) to create and load it. That is the

expected behavior since this method is encrypting the data fewer times compared

to CryptDB. Table 5.2 shows the time necessary to create the database using each

method, as well as the increase factor. Here, the increase factor is e−u
u

where e is

the time taken to encrypt the database using the specified method and u is the time

taken to create and load the unencrypted database.

Table 5.2: Time comparison for encrypting the same database among encryption
schemes.

Method Time (ms) (min) Increase Factor
Unencrypted 123 .002 0
Thesis 14614472 243.5 118815.84
CryptDB 25404584 423.4 206540.33

5.3.2 Select Statements

Select statements are used to retrieve data from the database. When received by the

proxy, the statements are converted using the process described in section 4.4.3. This

causes a small increase in size, since the 256-bit hash names are likely larger than the

original table and column names. This is especially true for select all (“SELECT

∗...”) queries, since each column needs to be enumerated to avoid also selecting the
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Paillier encrypted columns. It is beneficial to avoid downloading those columns since

they are not usually necessary and are much larger than the OPE-encrypted columns,

resulting in a reduction in the amount of data transmitted even with the larger query.

The majority of the total transmission size consists of the requested data itself.

Table 5.3 shows the size of the data that is transmitted back to the user for

the query “SELECT ∗ FROM employees LIMIT 100000;”. The size of the data

returned by this method is about 3.5 times larger than the unencrypted data, while

CryptDB caused an about 7.7 times size increase compared to the unencrypted query.

This is a result of CryptDB’s larger ciphertexts, which are a result of the layers of

encryption creating a blow-up effect. Since only the OPE encrypted columns need to

be transmitted, the size of numeric data in transit is less than the size of the same

data at rest on the cloud. Reductions in the size of the returned data are especially

helpful in cloud systems that charge for outbound data usage, such as AWS [1] or

Google’s cloud solution [5].

Table 5.3: Size increase of returned data.

Method Returned Data Size (MB) Increase Factor
Unencrypted 4.7 0
Thesis 16.5 2.5
CryptDB 36.2 6.7

Figure 5.1 (tabulated in Table 5.4) compares the time taken by the three systems

to perform the same select queries. 5.1a shows the average total time for each

query (including the client side encryptions and decryptions as well as the server

side SQL operations), while 5.1b shows the time taken by the server to execute the

query. Total time is used instead of client processing time to minimize the amount

of modifications made to CryptDB to enable testing. It also is useful because it
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represents the real impact on the user. The data points represent the retrieval

of 1,000; 5,000; 10,000; 50,000; and 100,000 rows from the employees table, i.e.

“SELECT ∗ FROM employees LIMIT 1000”. The complete query list can be

found in Appendix A. Before the testing phase, one row is selected from the database

to allow for any required initialization of the systems (encryption key retrieval, etc.).

This more accurately reflects the impact of the system since the proxy isn’t likely be

restarted between queries.

When selecting a smaller amount of records, this method takes more time than

CryptDB because the implementation of OPE that is used has a high start-up time.

When the number of rows is higher, the cost is shared between the rows and the total

decryption time is less. This can be verified by looking at the per-row decryption time.

For 1,000 rows, the average query time per row is 1.19 ms. For 10,000 to 100,000

rows, the average is about .2 ms, less than one fifth of the time required for a lesser

amount of rows and about a third of the time required by CryptDB. The increase in

time required for a select query as the number of rows returned grows is about linear

once the impact is shared among enough rows. The server-side processing time for

this method is about the same as that of an unencrypted database, while CryptDB

is consistently higher. This is probably because of the larger amount of data that the

server needs to retrieve from the disk.

Throughput

Throughput is the amount of data that is transferred in a given amount of time.

Faster throughput makes more responsive applications, and is especially important

in the web service industry. Measuring throughput reveals the real effect on the end

user, who is ultimately affected by the slowdown. The throughput penalty can be
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(a) Average total processing time (b) Average server processing time

Figure 5.1: Average query execution times as the number of returned rows increases
for select statements. Note that the x-axis is in log scale, so the linear increase in
time appears to be exponential.

Table 5.4: The impact of the various systems on the time taken to retrieve information
from the database. (Tabulated data from Figure 5.1a).

Method Rows Affected Total Time (ms) Time / Row (ms)
Unencrypted 1000 7 0.006

5000 8 0.002
10000 18 0.002
50000 63 0.001
100000 129 0.001

Thesis 1000 1190 1.19
5000 1657 .33
10000 2817 .28
50000 10850 .22
100000 21526 .22

CryptDB 1000 714 0.7140563557
5000 3725 0.75
10000 6031 0.60
50000 41712 0.83
100000 67338 0.67
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measured by taking the size of the actual, plaintext information being transmitted

divided by the time taken for any query. Throughput of an encrypted database is

impacted by the larger size of the data being transferred and the time taken to decrypt

the results. Table 5.5 compares the average plaintext bytes transferred per second

of a select statement ( plaintext data size
Average query time

), and the percentage of the transmission speed

that represents ( Method’s throughput
Unencrypted throughput

× 100). To calculate these results, the data from

the query returning 100,000 rows is used. Our method has a significant impact (slow

down) on throughput, but is still six times faster than CryptDB. These results are

shown in Table 5.5.

Table 5.5: The methods’ effect on throughput speed. Throughput is represented as
bytes per second.

Method Throughput (B/s) Percent Throughput
Unencrypted 35890.9 100
Thesis 215.4 0.6
CryptDB 68.9 0.1

“Where” Clauses

“Where” clauses allow the user to filter the data that is returned to them. The differ-

ence between the select statement with the “where” clause and the select statement

without is measured. This measures the impact of including a where clause in a select

query for the three systems we tested. The “where” clauses were chosen so that they

should return the same data as the statement without the clause. See Appendix A.1

for the list of statements used.

When the “where” clause is introduced, CryptDB must lower its security level

to allow for equality matching. The outermost layer of encryption is removed to

reveal deterministic ciphertexts that allow for equality matching. This operation was
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performed before the testing takes place since it only happens once and therefore does

not impact day-to-day operations.

Figure 5.2 (tabulated in Table 5.6) shows the time required for a select query

with a “where” clause. Including a “where” clause doesn’t change the overall form

of the trends; CryptDB begins taking more time than this method after retrieving

around 1200 records and this method still creates about the same server load as an

unencrypted database. Figure 5.3 graphs the time taken for a select statement with

a where clause minus the time for a select statement without one, i.e. how much

longer the query takes when the where clause is added. Initially, CryptDB showed

a decrease on both the client and server side. This is because the security level was

downgraded, meaning that less decryptions needed to be performed in order to find

the plaintext data. In order to test the actual difference between a select statement

with and without a “where” clause, the outermost layer of encryption needed to

be first removed. Figure 5.4 shows the new comparison. When the select without

a “where” is run at a lower security level, i.e. the security level the system is at

after equality matching is required, all three systems register little difference between

plain select statements and those with ”where” clauses until about 5,000 records are

returned, when CryptDB starts requiring more computation time. As with the plain

select statement, the increase is approximately linear after about 10,000 rows are

returned due to the start up cost of the OPE implementation.

From these results, we see that none of the three systems require much extra time

when a “where” statement is introduced as compared to the same statement without

it. This is encouraging because it shows that introducing encryption does not always

significantly increase the time needed to perform equality matches on data despite

the data’s larger size.
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(a) Average total processing time (b) Average server processing time

Figure 5.2: Average query execution times as the number of returned rows increases.

Table 5.6: The impact of the various systems on the time taken to retrieve information
from the database when a “where” clause is added to the query. (Tabulated data from
Figure 5.2).

Method Rows Affected Total Time (ms) Time / Row (ms)
Unencrypted 1000 0.75 0.00075

5000 7.785666667 0.002
10000 13.537 0.001
50000 82.797 0.002
100000 107.5026667 0.001

Thesis 1000 1270 1.27
5000 1776 0.36
10000 3220 0.32
50000 10838 0.22
100000 20605 0.21

CryptDB 1000 5057 0.50
5000 3131 0.63
10000 5554 0.56
50000 38780 0.78
100000 60848 0.61
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(a) Average total processing time difference (b) Average server processing time difference

Figure 5.3: The difference between a plain select statement and a select statement
with a where clause. CryptDB shows a greatly reduced time because the encryption
level changed. See 5.4 for an equal comparison.

(a) Average total processing time difference (b) Average server processing time difference

Figure 5.4: The difference between a plain select statement and a select statement
with a where clause when CryptDB is at a lower encryption level.



42

Join Clauses

Join clauses allow for data from two tables to be temporarily combined, e.g. pair

an address from the employees table with a salary from the salaries table. Join

statements couldn’t be tested on CryptDB because the version available on Github

does not have foreign key assignments correctly implemented.

Joins using this method do not require any special transformations by the SQL

proxy, but do take extra time on the server due to the larger size of the data. The

result of the experiment is shown in Figure 5.5 (tabulated in Table 5.7). The queries

used are listed in Appendix A.2.
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(a) Average total processing time (b) Average server processing time

Figure 5.5: Select queries with joined tables.

Table 5.7: The impact of the various systems on the time taken to retrieve information
from the database when a join clause is added to the query. (Tabulated data from
Figure 5.5).

Method Rows Affected Total Time (ms) Time / Row (ms)
Unencrypted 1000 20.11 0.020

5000 11.90 0.002
10000 7.92 0.001
50000 77.81 0.002
100000 103.01 0.001

Thesis 1000 627.33 0.63
5000 2498.33 0.50
10000 2608.00 0.26
50000 16052.67 0.32
100000 16418.67 0.16

Aggregate Functions

Aggregate functions, such as sum, average, or count, are important tools for a SQL

programmer. Both this method and CryptDB make use of Paillier encryption’s

additive homomorphic property in order to compute the sum of any numeric data.

Computing the encrypted sum requires modular multiplications, which are compu-

tationally more intensive than a regular addition. Consequently, the amount of time



44

required to compute the encrypted sum is increased above an unencrypted sum query.

To test the time required to compute a sum, the entire salary column, with a total

of 2844047 rows, is summed in the salaries table. This allows for testing the function

without any possible interference from a “where” or a “limit” clause. This also shows

that large numbers can be added without causing overflow issues as all three methods

calculated the same value. Table 5.8 shows the amount of time needed to compute

the sum of the column.

SELECT SUM( s a l a r y ) FROM s a l a r i e s ;

Table 5.8: Time taken to compute the sum of the salary column with a total of
2844047 rows.

Method Sum Function Time (ms) (min) Increase Factor
Unencrypted 1.4 0.00002 0
Thesis 620312.6 10.3 443079.4
CryptDB 2450771.314 40.8 1750549.9

The count function in our system does not need to be modified from the one used

in the unencrypted database, i.e. only the column, table, and database names are

changed, not the number of rows. This is possible because “null” (empty) values are

not encrypted, so they will not be counted. In the encrypted databases, the count

takes longer to compute because of the larger data size and because of the delay

introduced by the intermediary software. Table 5.9 shows the results of the test.

SELECT COUNT( s a l a r y ) FROM s a l a r i e s ;

5.3.3 Update Statements

Update statements allow users to change columns in rows that already exist. In the

proposed system, statements do not take much longer than those on an unencrypted
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Table 5.9: Time taken to count the number rows in the salary column with a total of
2844047 rows.

Method Count Function Time (ms) (min) Increase Factor
Unencrypted 1.5 0.00002 0
Thesis 14126.3 .235 9397.9
CryptDB 1319385.0 21.9 877854.6

database. For the query we tested, the data only had to be encrypted once and

could be applied to all rows in the column. Work done by the server accounted for

most of the work for both encrypted database schemes. For large batch updates,

this method takes about the same amount of time as an unencrypted update since a

single encryption does not take much time. CryptDB takes much longer because it

must generate a different ciphertext for each row, even when it represents the same

data. While this may not be a common operation, batch updates were tested to

follow a similar form as the other tests. The timing results of the sample updates

(Appendix B) can be seen in Figure 5.6 (tabulated in Table 5.10).
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(a) Average total processing time (b) Average server processing time

Figure 5.6: Update statements as the number of rows affected increases.

Table 5.10: The impact of the various systems on the time taken to update informa-
tion in the database. (Tabulated data from figure 5.6)

Method Rows Affected Total Time (ms) Time / Row (ms)
Unencrypted 1000 35.60 0.036

5000 95.69 0.019
10000 105.31 0.011
50000 1083.56 0.022
100000 732.37 0.007

Thesis 1000 14.67 0.01
5000 95.00 0.02
10000 118.00 0.01
50000 564.67 0.01
100000 1637.67 0.02

CryptDB 1000 663.42 0.66
5000 3205.58 0.64
10000 5364.61 0.54
50000 40786.59 0.82
100000 51964.32 0.52

As a more common use scenario, updates that change a single line were also tested.

This simulates users entering information into an application that changes previously

entered information, such as updating an email address or their phone number. Since

these types of updates seem most commonly to be strings, the last name column
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is updated here as the experiment. In this scenario, 100 different rows receive 100

different encrypted values in the form “UPDATE employees SET last name = ‘x

’ WHERE emp no = y” where each x is a different value and each y is a unique

employee id (emp id) number. The CryptDB encryption layer needed to be changed

to support the equality in the “where” clause, but the time taken to perform that

decryption is not included in the results shown in Table 5.11.

Table 5.11: The average time taken to update existing rows with a unique ciphertext.

Method Time / 100 Updates (ms) Time / Update (ms) Increase Factor
Unencrypted 231.1 2.3 0
Thesis 1660.3 16.6 6.2
CryptDB 79618.3 796.2 343.6

For our method, updating the “last name” column takes much less time than

a general insertion because only one datum needs to be encrypted and because no

Paillier encryption is required. Paillier encryption is much more computationally

expensive than order preserving encryption. Since only one encryption is required,

much less time is taken than the multiple encryptions required to update one datum

in CryptDB. Even though equality matching is revealed to the server (meaning that

the security of the system in this thesis and that of CryptDB are the same), CryptDB

will still encrypt each entry for “last name” six times and update three columns.

5.3.4 Delete Statements

Delete statements remove data from the database. Delete statements require no

encryption or decryption, only hashing of the I-type data. Accordingly, this method

takes about the same amount of time to delete data as an unencrypted database.

The comparison can be seen in Figure 5.7 (tabulated in Table 5.12). Although it
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also doesn’t require extra encryption, CryptDB takes longer to delete because of the

larger amount of data that needs to be marked for removal from the disk and the

increased number of columns.

(a) Average total processing time (b) Average server processing time

Figure 5.7: Average time in ms required to execute delete queries as the amount of
data being removed increases.

Table 5.12: The impact of the various systems on the time taken to delete information
from the database. (Tabulated data from Figure 5.7)

Method Rows Affected Total Time (ms) Time / Row (ms)
Unencrypted 1000 51.74 0.052

5000 63.45 0.013
10000 116.83 0.012
50000 354.96 0.007
100000 1723.28 0.017

Thesis 1000 47.00 0.044
5000 104.33 0.020
10000 124.00 0.011
50000 584.00 0.011
100000 1610.33 0.016

CryptDB 1000 612.03 0.607
5000 5167.47 1.033
10000 8253.49 0.825
50000 44071.93 0.881
100000 82637.76 0.826
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5.4 Security

Cloud systems generally have strong security against outside attackers. With this

in mind, this thesis is mainly concerned with attacks by insiders of the cloud sys-

tem: the system administrators, server technicians, or the network administrators

employed by the cloud provider. We are also concerned that the hosting company

might use another business’ sensitive data to increase its advantage in the market.

These attackers have persistent access to the data and are able to monitor it as it

changes. This thesis is mainly concerned with providing confidentiality. Integrity and

authenticity are also discussed.

5.4.1 Confidentiality

While CryptDB requires many encryptions for each datum, its encryption guarantee is

only stronger than the proposed system’s as long as any order operation (a greater or

less than operation or an “order by” clause) is not performed on a column. Once that

has happened, their security is no stronger than the system proposed in this thesis.

At that point, both systems have the Boldyreva order preserving encryption (OPE)

ciphertext and the Paillier cryptosystem ciphertext exposed to the cloud system.

Some columns may never require sorting, while others’ OPE values will be quickly

revealed. For example, names will need to be sorted alphabetically, dates will need

to be sorted to determine seniority, or sensor values from a certain time period will

need to be retrieved. Using the order property at any point in CryptDB leaves the

column permanently in the less secure state since any order-preserving query causes

a decryption to the order-revealing ciphertext.

As an example, any column besides title and dept name in the sample employees
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database would likely require the order property. This corresponds to 22 of the

24 (91.6%) columns in the CryptDB instance being reduced to the same security

guarantee as the instance in the proposed system. Of course, both systems provide

more confidentiality than an unencrypted database.

While cryptosystems that reveal order are inherently weaker than those that

do not, even computationally expensive tree-based ordering systems reveal enough

information for a motivated attacker to breach the data while still consuming a high

amount of resources. Boldyreva’s order preserving encryption, used here, is known

to satisfy the “pseudorandom order-preserving function against chosen-ciphertext at-

tack” (POPF-CCA) security definition [15]. Tree-based systems use nondeterministic,

very secure cryptosystems in conjunction with some tree data structure to achieve

indistinguishably under an ordered chosen plaintext attack (IND-OCPA), which is

normally considered a very high standard for order-based encryption. Grubs et al.’s

paper [22] shows that any encryption method that contains ordering information is

susceptible to leakage-abuse attacks by exploiting a non-crossing attack. Systems

that use tree structures to reveal order consume significantly more resources while

still leaving data vulnerable.

5.4.2 Authenticity

Authenticity is provided when an attacker cannot insert new data into the database

that appears to be provided by a legitimate user. Here, it guaranteed for string (S-

and SS-type) data because the order-preserving encryption keys are computationally

hard to find from the encrypted values. An attacker cannot insert new data into the

database without the encryption key. The only data an attacker would be able to
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insert is data that is already in the database, or a random value which may or may

not be able to be decrypted.

Because the Paillier cryptosystem is a public key cryptosystem, the attacker could

insert valid Paillier ciphertexts into the database. The OPE cipertext won’t be

updated to reflect the new value until the user sends an update query that involves

using the homomorphic value. The user will continue to see the old value until

that update is executed, until the user selects homomorphically updated data (e.g.

SELECT col + 10 FROM tbl;), or the user overwrites the modified ciphertext with

a new value (erasing the damage from the attack). This is the case for both this

system and for CryptDB. Of course, the attacker could insert any type of data into

an unencrypted database without detection.

5.4.3 Integrity

Integrity concerns the ability for the attacker to change data that is already in the

database without detection. This system can provide some integrity protection for

string values (S- and SS-type data), but not numeric values (N-type). Integrity is

provided for OPE encrypted values because new data cannot be inserted without the

encryption key, which is not revealed to the server. Any change to the ciphertext

without the key would be unlikely to render an intelligible plaintext. However, with-

out another system in place designed for integrity checking, there is not a systematic

way to check if the data has been modified. The changes can only be detected once

a user tries to interact with the data and notices that the results are corrupted. To

provide integrity that is verifiable by the system itself, better systems are available

[24].
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Because of the malleability provided by Paillier ciphertexts that allows aggregate

functions in the system to work, these ciphertexts can be modified by the attacker and

remain valid encryptions. This is achieved by multiplying two ciphertexts retrieved

from the database modulo n2 (which is public), or by raising a ciphertext to the power

of an unencrypted number modulo n2 and overwriting the old value with the result.

Again, this won’t affect the user until the user uses the homomorphic property or

overwrites the changed data.

Integrity of Paillier encrypted data could be checked in this system by decrypting

the cipher to retrieve the hash of the number (hash(m1), which is m2 in section 5 of

[36]) and comparing it with the hash of the retrieved number (m1).

(c× g−m1)n
−1

mod n
?
= hash(m1)

This is an expensive operation since transmission and decryption of the Paillier

ciphertext would not otherwise need to occur. Additionally, any data that has been

added to homomorphically would fail the hash check, with no way of knowing whether

the failure was caused by a legitimate addition or by data tampering. This is because

when multiplying the ciphertexts, (c = gm × hash(m) mod n) the hashes are also

multiplied together modulo n.
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CHAPTER 6

CONCLUSION

The use of cloud services for storing and processing data has become an irreversible

trend. As data collection becomes more ubiquitous and more personal, protecting

that data becomes significantly more important. Data encryption allows for consumer

trust to be retained in businesses that are using their data while allowing cost savings

for the business as well as for the customer by storing it on the cloud. Quick data

processing and data privacy are both important goals, but are often perceived as

at odds with each other by those implementing the systems. By using a minimum

amount of targeted encryption, we can provide fast data access and operation while

not releasing the data outside of its owner’s organization.

In this thesis, I have proposed a method of encrypting data such that it can

still be operated on without revealing the data to a third party (the cloud server),

that is more efficient than other systems, and that can be deployed on a commodity

database-as-a-service server or on a cloud virtual machine. A minimal amount of

encryption is used in order to preserve one of the benefits of cloud computing -

increased processing power - while still preserving confidentiality. It also preserves

the cost-saving component of the cloud, since less encryption corresponds to smaller

encrypted data sizes, meaning less cloud storage needs to be purchased and less data

needs to be transferred. I have tested the system in order to ascertain the impact of
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the system and compared it with other storage possibilities. These results show that

the transparency requirement is not broken (i.e. the queries were runnable without

modifying the server software) and that the impact of the encryption on the size of the

database and the time taken to execute queries is less than other database encryption

methods.

6.1 Limitations

The tests performed in this work were not done with actual data, and the sample

data used may be limited in its reflection of a database system used in a production

environment. Similarly, the queries used to benchmark the system may not reflect

queries used in day-to-day operations. However, they should give a general idea

about how the systems compare for basic operations. This is especially true since the

systems are implemented with different technologies.

Additionally, this system assumes that table relations do not change after the

tables’ initial creation, i.e. that foreign keys are not added to the tables at a later

time. Any addition of a foreign key constraint would require the entire column to be

re-encrypted with the alternate key.

6.2 Future Work

1. A web interface, like that outlined in Figure 4.1, could be implemented and

tested.

2. Testing and comparison using real data sets could give a picture of the day-

to-day impact of this system. Testing using larger or more complex data sets

could also be beneficial.
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3. Testing was performed using MySQL. Other SQL dialects could be imple-

mented.

4. The implementation used for experimentation here did not include any opti-

mizations such as multithreading or caching. Implementing those could give a

better idea of the commercial viability of this thesis as a product.

5. Integrity assurance products (like Karki’s thesis [24]) could be integrated with

this confidentiality-preserving model to provide more security aspects.
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SELECT STATEMENT LIST
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SELECT ∗ FROM employees LIMIT 1 ;

SELECT ∗ FROM employees LIMIT 1000 ;

SELECT ∗ FROM employees LIMIT 5000 ;

SELECT ∗ FROM employees LIMIT 10000 ;

SELECT ∗ FROM employees LIMIT 50000 ;

SELECT ∗ FROM employees LIMIT 100000;

A.1 Where Clause List
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SELECT ∗ FROM employees WHERE emp no < 499991 LIMIT 1 ;

SELECT ∗ FROM employees WHERE emp no < 499994 LIMIT 1000 ;

SELECT ∗ FROM employees WHERE emp no < 499995 LIMIT 5000 ;

SELECT ∗ FROM employees WHERE emp no < 499996 LIMIT 10000 ;

SELECT ∗ FROM employees WHERE emp no < 499997 LIMIT 50000 ;

SELECT ∗ FROM employees WHERE emp no < 499998 LIMIT 100000;

A.2 Join List

SELECT sa la ry , f i r s t n a m e FROM s a l a r i e s JOIN employees ON

s a l a r i e s . emp no = employees . emp no LIMIT 1 ;

SELECT sa la ry , f i r s t n a m e FROM s a l a r i e s JOIN employees ON

s a l a r i e s . emp no = employees . emp no LIMIT 1000 ;

SELECT sa la ry , f i r s t n a m e FROM s a l a r i e s JOIN employees ON

s a l a r i e s . emp no = employees . emp no LIMIT 5000 ;

SELECT sa la ry , f i r s t n a m e FROM s a l a r i e s JOIN employees ON

s a l a r i e s . emp no = employees . emp no LIMIT 10000 ;

SELECT sa la ry , f i r s t n a m e FROM s a l a r i e s JOIN employees ON

s a l a r i e s . emp no = employees . emp no LIMIT 50000 ;

SELECT sa la ry , f i r s t n a m e FROM s a l a r i e s JOIN employees ON

s a l a r i e s . emp no = employees . emp no LIMIT 100000;
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APPENDIX B

UPDATE STATEMENT LIST
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UPDATE employees SET last name = ’ Smith ’ LIMIT 1 ;

UPDATE employees SET last name = ’ Smith ’ LIMIT 1000 ;

UPDATE employees SET last name = ’ Smith ’ LIMIT 5000 ;

UPDATE employees SET last name = ’ Smith ’ LIMIT 10000 ;

UPDATE employees SET last name = ’ Smith ’ LIMIT 50000 ;

UPDATE employees SET last name = ’ Smith ’ LIMIT 100000;
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APPENDIX C

DELETE STATEMENT LIST
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DELETE FROM employees LIMIT 1 ;

DELETE FROM employees LIMIT 1000 ;

DELETE FROM employees LIMIT 5000 ;

DELETE FROM employees LIMIT 10000 ;

DELETE FROM employees LIMIT 50000 ;

DELETE FROM employees LIMIT 100000;
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APPENDIX D

EMPLOYEES DATABASE TABLE AND COLUMN LIST
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The database is presented in the format:

table name

1. column name

2. ...

Below are the tables and files for the employees database provided by Oracle. The

relationship diagram is available on their website [4].

departments

1. dept no

2. dept name

dept manager

1. dept no

2. emp no

3. from date

4. to date

dept emp

1. emp no

2. dept no

3. from date

4. to date
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employees

1. emp no

2. first name

3. last name

4. gender

5. hire date

salaries

1. emp no

2. salary

3. from date

4. to date

titles

1. emp no

2. title

3. from date

4. to date




